TTI-621 (SIRPαFc), a CD47-blocking cancer immunotherapeutic, triggers phagocytosis of lymphoma cells by multiple polarized macrophage subsets
نویسندگان
چکیده
Tumor-associated macrophages (TAMs) are heterogeneous and can adopt a spectrum of activation states between pro-inflammatory and pro-tumorigenic in response to the microenvironment. We have previously shown that TTI-621, a soluble SIRPαFc fusion protein that blocks the CD47 "do-not-eat" signal, promotes tumor cell phagocytosis by IFN-γ-primed macrophages. To assess the impact of CD47 blockade on diverse types of macrophages that are found within the tumor microenvironment, six different polarized human macrophage subsets (M(-), M(IFN-γ), M(IFN-γ+LPS), M(IL-4), M(HAGG+IL-1β), M(IL-10 + TGFβ)) with distinct cell surface markers and cytokine profiles were generated. Blockade of CD47 using TTI-621 significantly increased phagocytosis of lymphoma cells by all macrophage subsets, with M(IFN-γ), M(IFN-γ+LPS) and M(IL-10 + TGFβ) macrophages having the highest phagocytic response. TTI-621-mediated phagocytosis involves macrophage expression of both the low- and high-affinity Fcγ receptors II (CD32) and I (CD64), respectively. Moreover, macrophages with lower phagocytic capabilities (M(-), M(IL-4), M(HAGG+IL-1β)) could readily be re-polarized into highly phagocytic macrophages using various cytokines or TLR agonists. In line with the in vitro study, we further demonstrate that TTI-621 can trigger phagocytosis of tumor cells by diverse subsets of isolated mouse TAMs ex vivo. These data suggest that TTI-621 may be efficacious in triggering the destruction of cancer cells by a diverse population of TAMs found in vivo and support possible combination approaches to augment the activity of CD47 blockade.
منابع مشابه
TTI-621 (SIRPαFc): A CD47-Blocking Innate Immune Checkpoint Inhibitor with Broad Antitumor Activity and Minimal Erythrocyte Binding.
Purpose: The ubiquitously expressed transmembrane glycoprotein CD47 delivers an anti-phagocytic (do not eat) signal by binding signal-regulatory protein α (SIRPα) on macrophages. CD47 is overexpressed in cancer cells and its expression is associated with poor clinical outcomes. TTI-621 (SIRPαFc) is a fully human recombinant fusion protein that blocks the CD47-SIRPα axis by binding to human CD47...
متن کاملCD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer.
Small-cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with limited treatment options. CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRPα), which serves as an inhibitory receptor on macrophages. Here, we found that CD47 is highly expressed on the surface of human SCLC cells; therefore, we investigated CD47-blockin...
متن کاملEradication of Canine Diffuse Large B-Cell Lymphoma in a Murine Xenograft Model with CD47 Blockade and Anti-CD20.
Cancer immunotherapies hold much promise, but their potential in veterinary settings has not yet been fully appreciated. Canine lymphomas are among the most common tumors of dogs and bear remarkable similarity to human disease. In this study, we examined the combination of CD47 blockade with anti-CD20 passive immunotherapy for canine lymphoma. The CD47/SIRPα axis is an immune checkpoint that re...
متن کاملA fully human anti-CD47 blocking antibody with therapeutic potential for cancer
CD47/SIRPα interaction serves as an immune checkpoint for macrophage-mediated phagocytosis. Mouse anti-CD47 blocking antibodies had demonstrated potent efficacy in the treatment of both leukemic and solid tumors in preclinical experimentations, and therefore had moved forward rapidly into clinical trials. However, a fully human blocking antibody, which meets clinical purpose better, has not bee...
متن کاملA CD47-blocking TRAIL fusion protein with dual pro-phagocytic and pro-apoptotic anticancer activity.
The expedient removal of dying, damaged or altered cells by phagocytosis is essential for homeostasis. However, cancer cells can evade such phagocytic elimination by cell surfaceupregulation of phagocyte-inhibitory signals, such as CD47. CD47 is a prominent ‘don’t eat me’ signal that binds to signalregulatory protein alpha (SIRPa/SIRPA) expressed on phagocytes (Oldenborg et al, 2001). The CD47-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017